BILAN ENERGETIQUE D'UN SYSTEME MECANIQUE

① Chute libre

Une pomme de masse m = 150 g se détache d'un arbre. Sa vitesse à un mètre du sol est $v_1 = 7$ m.s⁻¹. On considérera le système S = {pomme + Terre}, l'action de l'air étant négligée.


Le niveau de référence pour l'énergie potentielle de pesanteur sera celui du sol.

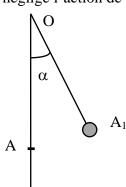
- 1° Exprimer littéralement l'énergie mécanique du système :
 - a à l'instant où la pomme vient de se détacher : Em₀
 - b quand la pomme est à un mètre du sol : Em₁
 - c quand la pomme arrive sur le sol (juste avant l'impact) : Em₂
- 2° Déduire des résultats précédents :
 - a l'altitude initiale de la pomme sur la branche
 - b la vitesse d'arrivée au sol
 - c la vitesse d'arrivée au sol d'une deuxième pomme de masse m' = 180g se détachant de la même branche horizontale.

On assimilera les pommes à des solides ponctuels *Remarque*:

On prendra $g = 10 \text{ N.kg}^{-1}$

3a. Démarrage d'une cabine d'ascenseur

Une cabine d'ascenseur de masse m = 120 kg peut glisser sans frottement le long de rails verticaux, l'action de l'air étant négligeable.


La cabine se trouvant au repos, la force de traction du câble prend à un instant t_1 la valeur T = 1400N et conserve cette valeur jusqu'à un instant t_2 . Entre les instants t_1 et t_2 , la cabine s'élève d'une hauteur h = 3 m.

La position du centre de gravité de la cabine à l'instant t₁ sera prise comme niveau de référence pour l'énergie potentielle. On prendra $g = 10 \text{ N.kg}^{-1}$.

- 1°) Déterminer l'énergie mécanique E_1 du système $S = \{ \text{Cabine} + \text{Terre} \}$ à l'instant t_1 .
- 2°) Montrer qu'entre les instants t₁ et t₂ le système échange de l'énergie avec le milieu extérieur. Calculer cette énergie.
- 3°) Quelle est l'énergie mécanique E₂ du système à l'instant t₂ ?
- 4°) Quelle est la vitesse de la cabine à l'instant t₂ ?
- 5°) Reprendre les questions précédentes en prenant comme système la cabine seule.

3b. Pendule simple

Un pendule est constitué d'une sphère métallique de masse m = 250 g suspendue en O à un support fixe par un fil de longueur L = 1 m. On écarte la sphère de sa position d'équilibre A_0 d'un angle $\alpha = 30^{\circ}$ (fil tendu) et on l'abandonne ensuite sans vitesse de la position A₁ On néglige l'action de l'air.

- 1° Déterminer l'énergie mécanique du système
- $S = \{ sphère + Terre + air \}$ en A_1 . Le niveau de référence pour l'énergie potentielle est le niveau de la position d'équilibre.
- 2° a Faire l'inventaire de la (des) force(s) extérieure(s) agissant sur ce système après le lâcher de la sphère.
 - b Evaluer son (leur) travail.
 - c Que peut-on en déduire pour l'énergie mécanique ?
 - d Déterminer alors la vitesse de la sphère à son passage en A₀.